

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2013; TECHNICAL AND PROFESSIONAL TRADES

EXAM TITLE: Electrotechnics OPTION: Electricity (ELC)
 DURATION: 3hours

INSTRUCTIONS:

The paper contains Three (3) Sections:

Section I: Seventeen (17) questions, all Compulsory. 55marks

Section II: Five (5) questions Choose and answer any Three (3). 30marks
Section III: Three (3) questions Choose and answer any one (1). 15marks

1. State the laws of electrostatics.

3marks

2. In practice, earth is chosen as a place of zero electric potential because it:

2marks

(a) is non-conducting
(b) is easily available
(c) keeps losing and gaining electric charge every day
(d) has almost constant potential
03. Calculate the distance of separation between two electrons (in vacuum) for which the electric force between them is equal to the gravitation force on one of them at the earth surface. Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$,
charge of electron $=1.6 \times 10^{-19} \mathrm{C}$.

3marks

4. A conductor material has a free-electron density of 10^{24} electrons per m^{3}. When a voltage is applied, a constant drift velocity of 1.5×10^{-2} meter/second is attained by the electrons. If the cross-sectional area of the material is $1 \mathrm{~cm}^{2}$, calculate the magnitude of the current. Electronic charge is 1.6×10^{-19} coulomb.

2marks

5. A rectangular carbon block has dimensions $1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm} \times 50 \mathrm{~cm}$.

What is the resistance measured between :
(i) the two square ends?

2marks
(ii) Between two opposing rectangular faces / Resistivity of carbon at $20^{\circ} \mathrm{C}$ is $3.5 \times 10^{-5} \Omega-\mathrm{m}$?

1mark
06. Describe the Fleming's left-hand rule. 3marks
07. What is the effect of rise in temperature on resistance of materials? 3marks
08. A 1500 turn coil is uniformly wound around an iron toroid of uniform cross sectional area of $5 \mathrm{~cm}^{2}$. Calculate the e.m.f and flux density produced if the resulting flux is 0.2 mWb when the coil current is 0.75 A .

2marks

9. State the laws of parallel currents.

3marks
10. A resistance of 10Ω is connected in series with two resistances each of 15Ω arranged in parallel. What resistance must be shunted across this parallel combination so that the total current taken is 1.5 A with 20 V applied?

4marks
11. Determine the torque established by the armature of a four-pole D.C. motor having 774 conductors, two paths in parallel, 24 milli-webers of pole-flux and the armature current is 50 Amps.

2marks
12. An alternating voltage is represented by the expression $v=35 \sin (314.2 t)$ volt. Determine,
(a) The maximum value,
(b) the frequency,
(c) the period of the waveform, and
(d) the value 3.5 ms after it passes through zero, going positive.
4marks
13. A conductor is moved at a velocity of $5 \mathrm{~m} / \mathrm{s}$ at an angle of 60° to a uniform magnetic field of 1.6 mWb . The field is produced by a pair of pole pieces, the faces of which measure 10 cm by 4 cm . If the conductor length is parallel to the longer side of the field, calculate the e.m.f induced; see Figure.

3marks

14. A voltage of 120 V at 50 Hz is applied to a resistance R in series with a capacitance C . The current drawn is 2 A , and the power loss in the resistance is 100 W . Calculate:
(i) The resistance;
(ii) The capacitance;
(iii) The power factor;
(iv) The phase angle;
15. If a single phase transformer has 500 turns on its primary and 1000 turns on its secondary.
a. Determine its turn's ratio. Is it step-up or step-down?

1mark
b. If its primary voltage is $e_{p}=25 \sin \omega t \mathrm{~V}$, what is its secondary voltage? 1mark
c. Sketch the waveforms.
16. A $220-\mathrm{V}$ d.c. shunt machine has an armature resistance of 0.5Ω. If the full-load armature current is 20 A , find the induced e.m.f. when the machine acts as:
(i) Generator
(ii) motor (Shunt current is negligible)
4marks
17. When the three identical star connected coils are supplied with $440 \mathrm{~V}, 50 \mathrm{~Hz}, 3$ phase supply, the wattmeter connected between phase R and the neutral reads 6 kW and the ammeter connected in R-phase reads 30A assuming RYB phase sequence, find:
i) Resistance and reactance of the coil;

4marks
ii) Reactive power of 3 phase load;

Section II: Choose and Answer any Three (3) questions

30marks

18. a) What does a capacitor consist of? Does current pass through it?

2marks
b) The capacitance of a capacitor formed by two parallel metal plates each of $200 \mathrm{~cm}^{2}$ in area separated by a dielectric 4 mm thick is 0.0004 microfarads.
A p.d. of $20,000 \mathrm{~V}$ is applied.
Calculate:
(i) The total charge on the plates;

2marks
(ii) The potential gradient in V / m;

2marks
(iii) Relative permittivity of the dielectric;

2marks
(iv) The electric flux density;
19. The resistance of the field winding of a shunt generator is 200Ω. When the machine is delivering 80 kW the generated e.m.f and terminal voltage are 475 V and 450 V respectively. Calculate:
(a) The armature resistance,

5marks
(b) The value of generated e.m.f when the output is 50 kW , the terminal voltage then being 460 V .

5marks
20. A resistance of 20 ohm , inductance of 0.2 H and capacitance of $150 \mu \mathrm{~F}$ are connected in series and are fed by a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find $\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}, \mathrm{Z}, \mathrm{Y}$, p.f., active power and reactive power.

10marks

21. A 3-phase, star-connected alternator supplies a load of 10 MW at p.f. of 0.85 lagging and at 11 kV (terminal voltage). Its resistance is 0.1 ohm per phase and synchronous reactance is 0.66 ohm per phase. Calculate the line value of e.m.f. generated.

10marks
22. A 3 -phase, delta/star connected $11,000 / 440 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer takes a line current of 5 amp , when secondary Load of 0.8 lagging p.f. is connected. Determine each coil current and output (kws) of transformer.

10marks

Section III: Choose and Answer any one (1) question 15marks

23. A $1100-\mathrm{V}, 50-\mathrm{Hz}$ delta-connected induction motor has a star-connected slip-ring rotor with a transformation ratio of 0.263 . The rotor resistance and standstill leakage reactance are 0.012 ohm and 0.25 ohm per phase respectively. Neglecting stator impedance and magnetizing current determine.
(i) The rotor current at start with slip-rings shorted;

4marks
(ii) The rotor power factor at start with slip-rings shorted;

1mark
(iii) The rotor current at 4% slip with slip-rings shorted;
(iv) The rotor power factor at 4% slip with slip-rings shorted;
(v) The external rotor resistance per phase required to obtain a starting current of 100

A in the stator supply lines.
24. An inductive coil, having resistance of 8Ω and inductance of 80 mH , is connected in series with a capacitance of $100 \mu F$ across $150 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate, and express the answers in both polar and rectangular forms.
(a) The current,
(b) The power factor,
(c) The voltages drops in the coil and capacitance respectively.
25. (a) What are the disadvantages of low lagging power factor?
(b) A 3-phase, $50-\mathrm{Hz}, 3,000-\mathrm{V}$ motor develops $600 \mathrm{~h} . \mathrm{p}$. $(447.6 \mathrm{~kW})$, the power factor being 0.75 lagging and the efficiency 0.93 . A bank of capacitors is connected in delta across the supply terminals and power factor raised to 0.95 lagging. Determine capacitance of each capacitor.

